הבדלים בין גרסאות בדף "חלוקת משקל"

מתוך Climbing_Encyclopedia
קפיצה אל: ניווט, חיפוש
(שיטה ג' - משולש)
(שיטות נוספות לחלוקת משקל)
 
(57 גרסאות ביניים של 3 משתמשים אינן מוצגות)
שורה 1: שורה 1:
שיטה לחיבור מספר [[אבני עיגון]] או עיגונים אחרים כדי לקבל עגינה מורכבת, [[תחנות|תחנה]]. קיימות מספר שיטות לבניית עגינה מורכבת והשאיפה בכולן היא שכל העיגונים יחלקו ביניהם את העומס וגם יגבו זה את זה. חלוקת משקל נקראת לפעמים גם חלוקת עומס או שקול.
+
[[תמונה: equalisation.jpg|left|thumb|400px|קורדלט בין שלושה צ'יקן-הדס]]
 +
'''חלוקת משקל''' (באנגלית: '''[[equalization]]''') היא שיטה לחיבור מספר [[עגינות]] ([[אבני עיגון]] או עיגונים אחרים) כדי לקבל עגינה מורכבת. עגינות מורכבות משמשות בד"כ כ[[תחנות]]. קיימות מספר שיטות לבניית עגינה מורכבת והשאיפה בכולן היא שכל העיגונים יחלקו ביניהם את העומס, ושאף אחד מהם לא יהיה נקודת כשל יחידה ([[נקודה קריטית]]), כלומר, שהם יגבו זה את זה. חלוקת משקל נקראת לפעמים גם חלוקת עומס או שקול.
 +
==חלוקת עומס==
 +
על מנת להקטין את הסיכוי לכשל במערכת, ניתן לחלק את העומס הפועל עליה למספר רכיבים מקבילים. במקרה כזה העומס על כל רכיב קטן מאשר העומס על המערכת כולה והסיכוי לכשל של כל רכיב יורד. רכיבים אלו יכולים גם להוות גיבוי אחד לשני. חלוקה של העומס נעשית על ידי חיבור מספר עיגונים למערכת אחת.
  
באנגלית: equalization
+
==עגינה מורכבת==
 +
עגינה מורכבת היא חיבור של מספר עיגונים כדי לקבל תחנה העונה על שתי הדרישות: גיבוי וחלוקת עומס (קיימות עוד דרישות מתחנה והן תלויות במצב המדוייק הנידון. גם המאמרים על [[תחנות]] ו[[חוזק ובטיחות בעיגונים]] עוסקים בנושא זה).
  
בצרפתית:
+
אין המטרה כאן לאפשר בחירת עיגונים חזקים פחות או בטוחים פחות על ידי תוספת של עיגונים. '''כל עיגון חייב להיות מספיק חזק ומספיק בטוח''' למטרת הפעילות (ואין טעם להשתמש באחוזים כדי לתאר את חלקו במערכת).
  
חלוקות עומס - מערכות עיגון מורכבות:
+
קל לראות כי כך הדבר מצורת חלוקות העומס המקובלות כפי שיפורטו בהמשך. במערכות אלו אם נשלף עיגון המערכת נעה עד לייצובה במצב חדש וסופגת עומס דינאמי בזמן ההתייצבות. עומס זה גדול יותר מהעומס על המערכת לפני שליפת העיגון ולכן הסיכוי לקריסת עיגונים נוספים גדול יותר וברור שיש צורך כי גם עיגונים אלו יהיו חזקים ובטוחים מספיק כדי שהמערכת לא תקרוס.
=מושגי יסוד=
 
==טיב העיגון (חוזק ובטיחות)==
 
טיב העיגון הוא שיקלול של שתי תכונות: חוזק העיגון ובטיחות העיגון.
 
===חוזק העיגון===
 
החוזק מתבטא בעומס שהעיגון יכול לשאת מבלי לקרוס. חוזק העיגון אינו מוחלט מאחר ואיננו מודדים אותו (אפשר להשתמש בדינמומטר ולבדוק בדיקה הרסנית - באיזה כוח העיגון כושל), אולם יש הכרח להעריכו ביחס למשימה אותה רוצים לבצע (לצורך משימת חילוץ דרוש עיגון חזק יותר מאשר לצורך גלישה).
 
===בטיחות העיגון===
 
מידת הביטחון כי העיגון לא יישלף ממקומו עקב שימוש לא נכון של באבן עיגון (רוק מחריץ, רצועה מקרן סלע וכו') או עומס בכיוון אחר פתאומי (אדם הנתקל בעיגון, יצירת שינויי כיוון במערכת לצורך הרמה וכו').
 
  
בטבלה הבאה מובאות מספר דוגמאות לעיגונים מבחינת בטיחות וחוזק:
+
חיבור עיגונים שאינם מספיק טובים יעשה רק בלית ברירה במצב בו אין בנמצא עיגונים טובים. דוגמא מקובלת היא בזמן בניית תחנה בטיפוס (זה קורה). מערכת כזו אכן מחלקת עומס אולם אינה פועלת בצורה טובה כגיבוי אם יישלף עיגון.
{| border="1"
 
| ||בטוח||לא בטוח
 
|-
 
|חזק
 
|
 
*בולדר גדול המחובר לסלע המצוק
 
*עץ אלון גדול
 
|
 
*גזע עץ הבולט 15 ס"מ מהקרקע
 
*בולדר גדול היושב על קרקע חולית וחבל העיגון על הקרקע מסביב לבולדר
 
|-
 
|חלש
 
|
 
*גשר קטן וסדוק
 
*עץ אורן או אקליפטוס קטן וצעיר
 
|
 
*פרנד בחריץ הנפתח כלפי כיוון העבודה
 
*אבן עיגון בסלע סדוק ולא יציב, כזה שניתן להזיז בכוח את חלקיו
 
|}
 
==נקודה קריטית==
 
הגדרתה של נקודה קריטית במערכת עבודת חבל היא נקודה אשר אם תכשל, תכשל יחד איתה כל המערכת.
 
בעיה זו היא הבסיס לכל נושא הגיבוי במערכות עבודת חבלים.  
 
  
*שים לב, במקרים רבים הנקודה הקריטית היא האדם עצמו. שתי דוגמאות ברורות הן [[אבטחה#אבטחה בטופ-רופ|אבטחה בטופ-רופ]] ו[[גלישה]] ללא [[אבטחה#אבטחהעצמית|אבטחה עצמית]].
+
*הערה: בעבר היה נהוג לומר כי מערכת צריכה להיות 100%. כלומר, אם היו לנו שלושה עיגונים פחות או יותר זהים כל עיגון צריך להיות 33%. במקרה כזה קל לראות כי אומנם יש חלוקת עומס אך אין גיבוי כלל. אם אחד העיגונים עיגון נשלף (כי הערכנו אותו יותר ממה שהוא באמת) נשארנו עם שני עיגונים שהם 66% אשר צריכים לשאת 100% משקל. ברור ששניהם יקרסו כי לא ציפינו מהם מעולם לשאת יותר משליש מהעומס כל אחד.
  
בעבודת חילוץ אנו משתדלים לבטל את כל הנקודות הקריטיות. במערכות [[סגנונות בטיפוס|טיפוס]] וגלישה יש נקודות קריטיות שלא ניתן (מטעמים של נוחיות ומעשיות) לבטל, או שלא רוצים (על פי שיקול דעת) לבטל. לדוגמה חלוקת משקל ב[[תחנות|תחנה]], עגינת [[גולש אחרון]] ועוד. כתרגיל: מנה את כל הנקודות הקריטיות במערכת [[טופ-רופ]].
+
מלבד זאת, הטענה כי יש יכולת להעריך עיגון באחוזים היא די מגוחכת ובקושי אנו יודעים להעריך האם העיגון מספיק חזק ובטוח לצורך המסויים הזה או לא.
  
==גיבוי==
+
=חלוקת עומס בין שתי עגינות=
גיבוי הוא כל חלק במערכת הבא למנוע תאונה בעקבות כשל בנקודה קריטית. הגיבוי יכנס לפעולה במקרה של כשל וימנע את כשל המערכת כולה. הסיבה העיקרית לכשלים היא טעויות אנוש כתוצאה מיישום לא נכון של חלקי המערכת או צורת עבודה לא נכונה או שאינה מתאימה למערכת. מיעוט קטן ביותר של הכשלים נגרמים עקב כשל טכני של ציוד.
+
==שיטה א' - גיבוי ללא חלוקת משקל==
 
+
[[תמונה: backup.jpg|שמאל|ממוזער|150px|גיבוי ללא חלוקת משקל, שיטה מקובלת להשארת [[טופ-רופ]] במסלולי [[טיפוס ספורטיבי]]]]
קימות שתי גישות כלליות לגיבויים במערכת [[חבלים]]:
+
חיבור שתי נקודות עיגון בנפרד לנקודת העומס ע"י שתי [[רצועות]] או [[חבלים]] באורך שווה ככל האפשר. בשיטה זו כמעט ואין חלוקת עומס. קשה מאוד להתאים את האורכים לחלוקת עומס כלשהי וגם אז, רק בכיוון מסויים. זו שיטה המספקת גיבוי פשוט בין העיגונים.
 
 
גישה אחת היא לגבות רק במקום בו (לדעת בונה המערכת) הגיבוי נחוץ. על פי שיטה זו יישום הגיבוי הוא סובייקטיבי ותלוי במי שבונה את המערכת, במידת מיומנותו ובהערכתו את הסיכונים במערכת.
 
 
 
על פי גישה זו מגבים רק נקודות בעייתיות משני סוגים:
 
 
 
1. מקומות בהם יש סיכון גבוה לכשל של ציוד. לדוגמה:
 
*טבעת הנלחצת על הסלע
 
*רצועה העוברת על פינת סלע במקום בו הסיכון לשחיקתה או קריעתה ממשי
 
 
 
2. נקודות אשר יש בהן סיכוי גבוה לכשל עקב טעות אנוש. לדוגמה:
 
*טבעות המחוברות לרתמה אשר יש סיכוי לפתיחתן בזמן הפעילות
 
*[[אבני עיגון]] ב[[תחנות|תחנה]]
 
 
 
גישה זו דורשת רמת ידע ומיומנות גבוהה ונהוגה יותר בפעילות שטח עצמאית כגון טיפוס מצוקים, טיפוס אלפיני, [[קניונינג]] ו[[מערנות]] (caving), כאשר יש חשיבות רבה למשקל הציוד ולפשטות המערכת וכך לדוגמא לא נהוג לגבות [[רצועות|סלינג תפור]] או [[טבעות|טבעת ננעלת]] הנמצאים בחלוקת משקל בתחנה אשר כולו באוויר ללא מגע עם הסלע.
 
 
 
הגישה השנייה היא ליישם גיבוי על כל חלקי המערכת (למעט עיגון כגון [[שימוש בעצים כעיגונים בעבודת חבל|עץ ענק]] וכדו'), ללא הפעלת שיקול דעת, על מנת להקטין למינימום בעיקר את האפשרות לטעות אנוש.
 
 
 
העיקרון הוא, כפי שנאמר, למזער את השימוש בשיקול הדעת של בונה או מפעיל המערכת וכך למנוע טעויות. שיטה זו נהוגה במערכות המיועדות להדרכת והפעלת חניכים וכן לחילוץ. גישה זו שולטת בכל הוראות הבטיחות של [[חוזר מנכ"ל]] משרד החינוך. על פי חוזר מנכ"ל, גישה זו מחוייבת בכל פעילויות החבלים לתלמידי בתי ספר, למעט מספר מקרים ספציפיים כגון טיפוס [[טופ-רופ]] בה לא ניתן ליישמה מטעמים מעשיים.
 
 
 
==חלוקת עומס==
 
על מנת להקטין את הסיכוי לכשל במערכת, ניתן לחלק את העומס הפועל עליה למספר רכיבים מקבילים. במקרה כזה העומס על כל רכיב קטן מאשר העומס על המערכת כולה והסיכוי לכשל של כל רכיב יורד. רכיבים אלו יכולים גם להוות גיבוי אחד לשני. חיבור מספר עיגונים למערכת אחת.
 
==עגינה מורכבת==
 
עגינה מורכבת היא חיבור מספר עיגונים כדי לקבל תחנה העונה על שתי הדרישות: גיבוי וחלוקת עומס.
 
  
אין המטרה כאן לאפשר בחירת עיגונים חזקים או בטוחים פחות ע"י הוספת עיגונים. כל עיגון חייב להיות מספיק חזק ומספיק בטוח למטרת הפעילות (ואין להשתמש באחוזים כדי לתאר את חלקו במערכת).
+
אפשרות העמסה בכיוונים שונים (תנועה של כיוון העומס <math>W</math> ימינה ושמאלה) כמעט ואין כי תנועה גורמת לכך שלא תהיה כלל חלוקת עומס.
  
קל לראות כי כך הדבר מצורת חלוקות העומס המקובלות כפי שיפורטו בהמשך. במערכות אלו אם נשלף עיגון המערכת נעה עד לייצובה במצב חדש וסופגת עומס דינאמי בזמן ההתייצבות. עומס זה גדול יותר מהעומס על המערכת לפני שליפת העיגון ולכן הסיכוי לקריסת עיגונים נוספים גדול יותר וברור שיש צורך כי עיגונים אלו יהיו חזקים ובטוחים מספיק כדי שהמערכת לא תקרוס.
 
  
חיבור עיגונים שאינם מספיק טובים יעשה רק בלית ברירה במצב בו אין בנמצא עיגונים טובים כגון בבניית תחנה בטיפוס ואז מערכת זו מחלקת עומס אולם אינה פועלת בצורה טובה כגיבוי אם יישלף עיגון.
 
  
הערה-בעבר היה נהוג לומר כי מערכת צריכה להיות 100% כלומר אם היו לנו 3 עיגונים פחות או יותר זהים כל עיגון צריך להיות 33%. במקרה כזה קל לראות כי אומנם יש חלוקת עומס אך אין גיבוי כלל מאחר ואם עיגון נשלף נשארנו עם 2 עיגונים שהם 66% אשר צריכים לשאת 100% משקל וברור ששניהם יקרסו. מלבד זאת הטענה כי יש יכולת להעריך עיגון באחוזים היא די מגוחכת ובקושי אנו יודעים להעריך האם העיגון מספיק חזק ובטוח לצורך המסויים הזה או לא.
 
  
=חלוקת עומס בין שתי עגינות=
 
==שיטה א' - גיבוי ללא חלוקת משקל==
 
חיבור שתי נקודות עיגון בנפרד לנקודת העומס ע"י שתי [[רצועות]] או [[חבלים]] באורך שווה ככל האפשר.
 
  
חלוקת עומס: כמעט ואין (קשה מאוד להתאים אורכים לחלוקת עומס כלשהי) וגם אז, רק בכיוון מסויים.
 
  
גיבוי בין העיגונים: יש.
 
  
אפשרות העמסה בכיוונים שונים (תנועת נקודת העומס W ימינה ושמאלה): כמעט ואין כי תנועה גורמת לכך שלא תהיה כלל חלוקת עומס.
 
  
 
==שיטה ב' - חלוקת משקל ללא גיבוי==
 
==שיטה ב' - חלוקת משקל ללא גיבוי==
שיטה נוספת היא חלוקת העומס ע"י רצועה כאשר הטבעת נעה בחופשיות על הרצועה (ללא הצלבה כמו בחלוקת עומס קלאסית)
+
שיטה נוספת היא חלוקת העומס ע"י רצועה כאשר הטבעת נעה בחופשיות על הרצועה (ללא הצלבה כמו בחלוקת עומס קלאסית). חישוב העומסים וחלוקת המשקל כמו בשיטה ד' להלן. בתחנה הבנוייה כך יש חלוקת עומס בין העיגונים אך אין גיבוי. אם עיגון קורס הטבעת הראשית תחליק על הרצועה והחוצה ממנה והמערכת כולה תקרוס.
  
חישוב העומסים וחלוקת המשקל כמו בשיטה ד'.
+
בחיבור כזה יש אפשרות העמסה בכיוונים שונים (תנועת נקודת העומס <math>W</math> ימינה ושמאלה).
 
 
חלוקת עומס: יש
 
 
 
גיבוי בין העיגונים: אין (מאחר ואם עיגון קורס הטבעת הראשית תחליק על הרצועה והחוצה ממנה והמערכת כולה תקרוס).
 
 
 
אפשרות העמסה בכיוונים שונים (תנועת נקודת העומס W ימינה ושמאלה): יש.
 
 
==שיטה ג' - משולש==
 
==שיטה ג' - משולש==
שיטה נוספת לחבר בין שני עיגונים היא ע"י משולש פשוט (מרצועה או חבל):
+
[[תמונה: triangle.jpg|שמאל|ממוזער|150px|חלוקת משקל בשיטת משולש. הכוח על העיגונים הוא בכיוון חוצה הזווית בין הרצועות היוצאות מהם]]
 
+
שיטה נוספת לחבר בין שני עיגונים היא ע"י משולש פשוט (מרצועה או חבל). שיטה זו נקראת לפעמים '''משולש אמריקאי''' (american triangle) ולמי שרוצה להפחיד: '''משולש מוות'''. בשיטה זו יש חלוקת עומס וגם גיבוי בין העיגונים.
חלוקת עומס: יש.
 
 
 
גיבוי בין העיגונים: יש.
 
 
 
אפשרות העמסה בכיוונים שונים (תנועת נקודת העומס W ימינה ושמאלה): יש, עם מגבלה מסויימת. משיכה לצדדים משנה את חלוקת העומס במידה משמעותית.
 
  
אם הזווית בין הרצועות היא <math>\alpha</math> והמשקל <math>W</math> מקבלים כי הכוח על העגינות <math>F</math> הוא:
+
גם כאן יש אפשרות העמסה בכיוונים שונים (תנועת נקודת העומס <math>W</math> ימינה ושמאלה) אך עם מגבלה מסויימת. משיכה לצדדים משנה את חלוקת העומס במידה משמעותית.
  
<math>F=2\frac{W}{2cos(\alpha/2)cos(\frac{180-\alpha}{2})</math>
+
אם הזווית בין הרצועות בטבעת התחתונה היא <math>\alpha</math> והמשקל <math>W</math> מקבלים כי הכוח על העגינות <math>F</math> הוא:
 +
<center>
 +
<math>F=\frac{Wcos(45-\frac{\alpha}{4})}{cos(\alpha/2)}</math>
 +
</center>
 +
בשיטה זו, העומס על העיגונים עולה במהירות רבה עם הזווית בטבעת התחתונה. בזווית של 60° הזווית בין הכוחות על העגינות כבר 120°, והעומס על כל עגינה הוא 100%, כך שלמעשה, אין עוד חלוקת משקל אלא רק גיבוי.
  
 
==שיטה ד' - חלוקת משקל וגיבוי, השיטה הקלאסית==
 
==שיטה ד' - חלוקת משקל וגיבוי, השיטה הקלאסית==
השיטה המקובלת לחלוקת עומס בין שתי נקודות היא ע"י חיבורן ברצועה או חבל בצורה הבאה (הצלבה ברצועה ליד הטבעת הראשית של החלוקה):
+
[[תמונה: equalize.jpg|שמאל|ממוזער|450px|חלוקת משקל קלאסית בין שתי עגינות. שיטה זו מספקת חלוקת משקל וגיבוי בכל כיוון, אך אינה מונעת העמסה דינאמית במקרה של כשל]]
 +
[[תמונה: less shock.jpg|שמאל|ממוזער|450px|על ידי קיצור החבל שמחלק את העומס, מקבלים התארכות פוטנציאלית קטנה יותר, ולכן, המכה במקרה של שליפה - תהיה קטנה יותר. במקרה זה - הקיצור נעשה על ידי קשרים]]
  
חלוקת עומס: יש
+
זוהי השיטה המקובלת לחלוקת עומס בין שתי נקודות. שיטה זו נקראת חלוקת משקל קלאסית (באנגלית: sliding x). בשיטה שזו מעבירים רצועה סגורה או לולאת חבל דרך שני העיגונים, ודרך טבעת נוספת, ראשית, שאליה מתחברים. שימו לב להצלבה ברצועה ליד הטבעת הראשית. בתחנה כזו יש חלוקת עומס וגיבוי בין העיגונים. בתחנה הבנוייה כך יש גם אפשרות העמסה בכיוונים שונים (שוב, תנועת נקודת העומס <math>W</math> ימינה ושמאלה). אם יש קשר ברצועה כדאי למקם אותו רחוק מהטבעות כדי שהוא לא יגביל את טווח התנועה של הטבעת. החיסרון בגדול של שיטה זו הוא שבמקרה של שליפה של עגינה, האחרת (או אחרות) יקבלו [[עומס דינאמי]].
  
גיבוי בין העיגונים: יש
+
ושוב, אם הזווית בין הרצועות היא <math>\alpha</math> והמשקל <math>W</math> מקבלים כי הכוח על העגינות <math>F</math> גדל עם הזווית והוא שווה ל: <math>F=\frac{W}{2cos(\alpha/2)}</math>
  
אפשרות העמסה בכיוונים שונים (תנועת נקודת העומס W ימינה ושמאלה): יש. אם יש קשר ברצועה כדאי למקם אותו רחוק מהטבעות כדי שהוא לא יפריע לתנועת הטבעת.
+
במקרה זה פועל על העיגון כוח בכיוון הרצועה המושכת את העיגון. זה נראה דומה למשולש, אבל למעשה הכיוון כאן שונה לגמרי. בשיטת המשולש, כאמור, הכוח פועל בכיוון חוצה הזווית שבין הרצועות של המשולש, ולא של הרצועה שיורדת ומתחברת לטבעת הראשית. יוצא שהעומס עולה בתלות בזווית בקצב איטי יותר משיטת המשולש (ראה טבלת השוואה בהמשך).
  
ושוב, אם הזווית בין הרצועות היא <math>\alpha</math> והמשקל <math>W</math> מקבלים כי הכוח על העגינות <math>F</math> גדל עם הזווית והוא שווה ל: <math>F=\frac{W}{2cos(\alpha/2)}</math>  
+
קל לראות כי בחלוקת עומס קלאסית, הכוח על העיגונים הולך כמו: <math>\frac{1}{cos(\alpha/2)}</math>. לכן, גם בחלוקת עומס כזו העומס על העיגונים עולה עם הזווית, ובאופן תיאורטי, בזווית של 180° העומס יגיע לאינסוף.
  
במקרה זה פועל על העיגון כוח דומה בגודלו לשיטת המשולש, אולם הכוח פועל בכיוון שונה (הכיוון של F ולא של X). כיוון זה רצוי יותר מאחר ובשיטת המשולש נצטרך למצוא עיגונים הנושאים עומס בצורה טובה אחד מול השני (בזווית של 90 מעלות ל- W).
+
בזווית ראש של 120° (ליד <math>W</math>) העומס על כל עיגון זהה לעומס על המערכת כולה ובעצם אין יותר חלוקה של העומס אלא גיבוי בלבד. מצב זה אינו רצוי ויש לעבוד בזויות קטנות יותר. ככלל אצבע ניתן לקחת זווית מקסימלית של 90°, שהיא קלה לזיהוי גם בשטח ללא מכשירי מדידה.
 +
==שיטות נוספות לחלוקת משקל==
 +
בשנים האחרונות (אולי בעשורים האחרונים) התפתחו מספר שיטות מעניינות לבניית תחנה עם חלוקות משקל פשוטות, מהירות ובטוחות כמו [[קוואד]], [[קורדלט]] ועוד.
  
השוואה בין שתי צורות חלוקת המשקל מבחינת עומסים על העיגון:
+
==השוואת הכוחות על העיגונים==
 +
הטבלה הבאה משווה בין חלוקת משקל קלאסית ובין משולש אמריקאי, מבחינת עומסים על העיגונים:
  
 
{| border="1"  
 
{| border="1"  
|זווית ראש α||חלוקת משקל: F / W||משולש X / W
+
|זווית ראש <math>\alpha</math>||<math>F/W</math> בחלוקת משקל קלאסית<math>F/W</math>||<math>F/W</math> במשולש אמריקאי
 
|-
 
|-
 
|0||50%||71%
 
|0||50%||71%
 
|-
 
|-
|30||52%||65%
+
|30||52%||82%
 
|-
 
|-
|60||58%||67%
+
|60||58%||100%
 
|-
 
|-
|90||71%||77%
+
|90||71%||131%
 
|-
 
|-
|120||100%||104%
+
|120||100%||193%
 
|-
 
|-
|140||146%||148%
+
|140||146%||288%
 
|-
 
|-
|150||193%||195%
+
|150||193%||383%
 
|-
 
|-
|160||288%||289%
+
|160||288%||573%
 
|-
 
|-
|170|||574%||574%
+
|170|||574%||1146%
 
|-
 
|-
|175||1146%||1147%
+
|175||1146%||2292%
 
|-
 
|-
|178||2865%||2865%
+
|178||2865%||5730%
 
|}
 
|}
 
קל לראות כי בחלוקת עומס קלאסית, העומס על העיגונים עולה עם הזווית. באופן תיאורטי בזוית של 180° העומס יגיע לאינסוף.
 
 
הכוח על העיגונים הולך כמו:
 
 
בזווית ראש של 120° (ליד W) העומס על כל עיגון זהה לעומס על המערכת כולה ובעצם אין יותר חלוקה של העומס אלא גיבוי בלבד.
 
 
מצב זה אינו רצוי ויש לעבוד בזויות קטנות יותר. ניתן לקחת ככלל אצבע זווית מכסימלית של 90° מאחר וקל לזהותה בעין.
 
  
 
=חלוקת עומס בין שלוש עגינות=
 
=חלוקת עומס בין שלוש עגינות=
 
==חלוקה שווה==
 
==חלוקה שווה==
בדומה לשיטה הקלאסית של חלוקת עומס בשתי נקודות יש הצלבה בטבעת ליד W כך שאין אפשרות של בריחת הרצועה מהחלוקה אם נשלף עיגון.
+
בדומה לשיטה הקלאסית של חלוקת עומס בשתי נקודות יש הצלבה בטבעת ליד <math>W</math> כך שאין אפשרות של בריחת הרצועה מהחלוקה אם נשלף עיגון.
 
 
חלוקת עומס: יש.
 
  
גיבוי בין העיגונים: יש.
+
בחיבור כזה יש חלוקת עומס, יש גיבוי בין העיגונים, ויש אפשרות העמסה בכיוונים שונים (תנועת נקודת העומס <math>W</math> ימינה ושמאלה).
  
אפשרות העמסה בכיוונים שונים (תנועת נקודת העומס W ימינה ושמאלה): יש.
+
הכוח על כאן העגינות הוא:
 +
<math>F=\frac{W}{1+2cos(\frac{\alpha}{2})}</math>
  
חישוב העומס:
+
כפי שהוזכר בחלוקת עומס בין שני עיגונים העומס עולה (תיאורטית) עד לאינסוף אם נגדיל את הזווית. זוהי אפשרות תיאורטית, כי מעשית אי אפשר להגדיל את הזווית עוד ועוד, כי הרצועה נמתחת ומתארכת עם העלייה במתיחות. ניתן לראות בנוסחה שהעומס על העיגונים עולה מאחר ובמכנה יש <math>cos(\frac{\alpha}{2})</math>. הביטוי הזה מתאפס בזוית של 180°. בחלוקת משקל בין שלוש עגינות העומס המכסימלי <math>F</math> יכול להגיע עד <math>W</math> בלבד כאשר הכוח על שתי העגינות הצדדיות מתאפס.
  
כפי שהוזכר בחלוקת עומס בין שני עיגונים העומס עולה (תיאורטית) עד לאינסוף אם נגדיל את הזווית (מעשית לא ניתן לביצוע) מאחר ובחישוב יש cos במכנה של השבר אשר בזוית של 180° שווה 0. בחלוקת משקל בין שלוש עגינות העומס המכסימלי F יכול להגיע עד W בלבד כאשר שתי העגינות הצדדיות 0.
+
כלומר העומס על העיגונים יכול להיות רק בין <math>\frac{W}{3}</math> לבין <math>W</math>. זהו הבדל משמעותי ובחלוקת משקל כזו לשלושה עיגונים אין חשיבות רבה לזווית כמו בחלוקה לשני עיגונים.
  
כלומר העומס על העיגונים יכול להיות רק בין W/3 לבין W. זהו יתרון משמעותי ובחלוקת משקל כזו לשלושה עיגונים אין חשיבות רבה לזווית כמו בחלוקה לשני עיגונים.
 
 
==חלוקה לא שווה==
 
==חלוקה לא שווה==
 
ניתן לחלק את העומס בצורה לא שווה כך שאחת העגינות תקבל חצי מהעומס, ושתי האחרות תקבלנה כל אחת רבע מהעומס.
 
ניתן לחלק את העומס בצורה לא שווה כך שאחת העגינות תקבל חצי מהעומס, ושתי האחרות תקבלנה כל אחת רבע מהעומס.
 +
=קריאה נוספת=
 +
* [[ תחנות]]
 +
* [[חוזק ובטיחות בעיגונים]]
 +
* [[אבני עיגון]]
 +
* [[עומס דינאמי ועומס סטאטי]]
 +
* [[קוואד]]
 +
* [[קורדלט]]
 +
 +
=קישורים חיצוניים=
 +
[http://www.chetwynd.info/other/anchors.htm מאמר בנושא דומה]
 
----
 
----
תרמו לדף זה: מיכה יניב, דורון נצר ואחרים...
+
תרמו לדף זה: [[משתמש: מיכה יניב|מיכה יניב]], דורון נצר ואחרים...
 +
 
 +
[[קטגוריה:טכניקות ומיומנויות]][[קטגוריה: טיפוס הרים]][[קטגוריה: ציוד טיפוס הרים]][[קטגוריה: טיפוס]][[קטגוריה: טיפוס סלע]][[קטגוריה: טיפוס מלאכותי]][[קטגוריה: בטיחות]][[קטגוריה: מאמרים מתורגמים ומקוריים]]

גרסה אחרונה מ־01:15, 21 בפברואר 2023

קורדלט בין שלושה צ'יקן-הדס

חלוקת משקל (באנגלית: equalization) היא שיטה לחיבור מספר עגינות (אבני עיגון או עיגונים אחרים) כדי לקבל עגינה מורכבת. עגינות מורכבות משמשות בד"כ כתחנות. קיימות מספר שיטות לבניית עגינה מורכבת והשאיפה בכולן היא שכל העיגונים יחלקו ביניהם את העומס, ושאף אחד מהם לא יהיה נקודת כשל יחידה (נקודה קריטית), כלומר, שהם יגבו זה את זה. חלוקת משקל נקראת לפעמים גם חלוקת עומס או שקול.

חלוקת עומס

על מנת להקטין את הסיכוי לכשל במערכת, ניתן לחלק את העומס הפועל עליה למספר רכיבים מקבילים. במקרה כזה העומס על כל רכיב קטן מאשר העומס על המערכת כולה והסיכוי לכשל של כל רכיב יורד. רכיבים אלו יכולים גם להוות גיבוי אחד לשני. חלוקה של העומס נעשית על ידי חיבור מספר עיגונים למערכת אחת.

עגינה מורכבת

עגינה מורכבת היא חיבור של מספר עיגונים כדי לקבל תחנה העונה על שתי הדרישות: גיבוי וחלוקת עומס (קיימות עוד דרישות מתחנה והן תלויות במצב המדוייק הנידון. גם המאמרים על תחנות וחוזק ובטיחות בעיגונים עוסקים בנושא זה).

אין המטרה כאן לאפשר בחירת עיגונים חזקים פחות או בטוחים פחות על ידי תוספת של עיגונים. כל עיגון חייב להיות מספיק חזק ומספיק בטוח למטרת הפעילות (ואין טעם להשתמש באחוזים כדי לתאר את חלקו במערכת).

קל לראות כי כך הדבר מצורת חלוקות העומס המקובלות כפי שיפורטו בהמשך. במערכות אלו אם נשלף עיגון המערכת נעה עד לייצובה במצב חדש וסופגת עומס דינאמי בזמן ההתייצבות. עומס זה גדול יותר מהעומס על המערכת לפני שליפת העיגון ולכן הסיכוי לקריסת עיגונים נוספים גדול יותר וברור שיש צורך כי גם עיגונים אלו יהיו חזקים ובטוחים מספיק כדי שהמערכת לא תקרוס.

חיבור עיגונים שאינם מספיק טובים יעשה רק בלית ברירה במצב בו אין בנמצא עיגונים טובים. דוגמא מקובלת היא בזמן בניית תחנה בטיפוס (זה קורה). מערכת כזו אכן מחלקת עומס אולם אינה פועלת בצורה טובה כגיבוי אם יישלף עיגון.

  • הערה: בעבר היה נהוג לומר כי מערכת צריכה להיות 100%. כלומר, אם היו לנו שלושה עיגונים פחות או יותר זהים כל עיגון צריך להיות 33%. במקרה כזה קל לראות כי אומנם יש חלוקת עומס אך אין גיבוי כלל. אם אחד העיגונים עיגון נשלף (כי הערכנו אותו יותר ממה שהוא באמת) נשארנו עם שני עיגונים שהם 66% אשר צריכים לשאת 100% משקל. ברור ששניהם יקרסו כי לא ציפינו מהם מעולם לשאת יותר משליש מהעומס כל אחד.

מלבד זאת, הטענה כי יש יכולת להעריך עיגון באחוזים היא די מגוחכת ובקושי אנו יודעים להעריך האם העיגון מספיק חזק ובטוח לצורך המסויים הזה או לא.

חלוקת עומס בין שתי עגינות

שיטה א' - גיבוי ללא חלוקת משקל

גיבוי ללא חלוקת משקל, שיטה מקובלת להשארת טופ-רופ במסלולי טיפוס ספורטיבי

חיבור שתי נקודות עיגון בנפרד לנקודת העומס ע"י שתי רצועות או חבלים באורך שווה ככל האפשר. בשיטה זו כמעט ואין חלוקת עומס. קשה מאוד להתאים את האורכים לחלוקת עומס כלשהי וגם אז, רק בכיוון מסויים. זו שיטה המספקת גיבוי פשוט בין העיגונים.

אפשרות העמסה בכיוונים שונים (תנועה של כיוון העומס עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): W ימינה ושמאלה) כמעט ואין כי תנועה גורמת לכך שלא תהיה כלל חלוקת עומס.





שיטה ב' - חלוקת משקל ללא גיבוי

שיטה נוספת היא חלוקת העומס ע"י רצועה כאשר הטבעת נעה בחופשיות על הרצועה (ללא הצלבה כמו בחלוקת עומס קלאסית). חישוב העומסים וחלוקת המשקל כמו בשיטה ד' להלן. בתחנה הבנוייה כך יש חלוקת עומס בין העיגונים אך אין גיבוי. אם עיגון קורס הטבעת הראשית תחליק על הרצועה והחוצה ממנה והמערכת כולה תקרוס.

בחיבור כזה יש אפשרות העמסה בכיוונים שונים (תנועת נקודת העומס עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): W ימינה ושמאלה).

שיטה ג' - משולש

חלוקת משקל בשיטת משולש. הכוח על העיגונים הוא בכיוון חוצה הזווית בין הרצועות היוצאות מהם

שיטה נוספת לחבר בין שני עיגונים היא ע"י משולש פשוט (מרצועה או חבל). שיטה זו נקראת לפעמים משולש אמריקאי (american triangle) ולמי שרוצה להפחיד: משולש מוות. בשיטה זו יש חלוקת עומס וגם גיבוי בין העיגונים.

גם כאן יש אפשרות העמסה בכיוונים שונים (תנועת נקודת העומס עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): W ימינה ושמאלה) אך עם מגבלה מסויימת. משיכה לצדדים משנה את חלוקת העומס במידה משמעותית.

אם הזווית בין הרצועות בטבעת התחתונה היא עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): \alpha והמשקל עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): W מקבלים כי הכוח על העגינות עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): F הוא:

עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): F=\frac{Wcos(45-\frac{\alpha}{4})}{cos(\alpha/2)}

בשיטה זו, העומס על העיגונים עולה במהירות רבה עם הזווית בטבעת התחתונה. בזווית של 60° הזווית בין הכוחות על העגינות כבר 120°, והעומס על כל עגינה הוא 100%, כך שלמעשה, אין עוד חלוקת משקל אלא רק גיבוי.

שיטה ד' - חלוקת משקל וגיבוי, השיטה הקלאסית

חלוקת משקל קלאסית בין שתי עגינות. שיטה זו מספקת חלוקת משקל וגיבוי בכל כיוון, אך אינה מונעת העמסה דינאמית במקרה של כשל
על ידי קיצור החבל שמחלק את העומס, מקבלים התארכות פוטנציאלית קטנה יותר, ולכן, המכה במקרה של שליפה - תהיה קטנה יותר. במקרה זה - הקיצור נעשה על ידי קשרים

זוהי השיטה המקובלת לחלוקת עומס בין שתי נקודות. שיטה זו נקראת חלוקת משקל קלאסית (באנגלית: sliding x). בשיטה שזו מעבירים רצועה סגורה או לולאת חבל דרך שני העיגונים, ודרך טבעת נוספת, ראשית, שאליה מתחברים. שימו לב להצלבה ברצועה ליד הטבעת הראשית. בתחנה כזו יש חלוקת עומס וגיבוי בין העיגונים. בתחנה הבנוייה כך יש גם אפשרות העמסה בכיוונים שונים (שוב, תנועת נקודת העומס עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): W ימינה ושמאלה). אם יש קשר ברצועה כדאי למקם אותו רחוק מהטבעות כדי שהוא לא יגביל את טווח התנועה של הטבעת. החיסרון בגדול של שיטה זו הוא שבמקרה של שליפה של עגינה, האחרת (או אחרות) יקבלו עומס דינאמי.

ושוב, אם הזווית בין הרצועות היא עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): \alpha והמשקל עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): W מקבלים כי הכוח על העגינות עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): F גדל עם הזווית והוא שווה ל: עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): F=\frac{W}{2cos(\alpha/2)}

במקרה זה פועל על העיגון כוח בכיוון הרצועה המושכת את העיגון. זה נראה דומה למשולש, אבל למעשה הכיוון כאן שונה לגמרי. בשיטת המשולש, כאמור, הכוח פועל בכיוון חוצה הזווית שבין הרצועות של המשולש, ולא של הרצועה שיורדת ומתחברת לטבעת הראשית. יוצא שהעומס עולה בתלות בזווית בקצב איטי יותר משיטת המשולש (ראה טבלת השוואה בהמשך).

קל לראות כי בחלוקת עומס קלאסית, הכוח על העיגונים הולך כמו: עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): \frac{1}{cos(\alpha/2)} . לכן, גם בחלוקת עומס כזו העומס על העיגונים עולה עם הזווית, ובאופן תיאורטי, בזווית של 180° העומס יגיע לאינסוף.

בזווית ראש של 120° (ליד עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): W ) העומס על כל עיגון זהה לעומס על המערכת כולה ובעצם אין יותר חלוקה של העומס אלא גיבוי בלבד. מצב זה אינו רצוי ויש לעבוד בזויות קטנות יותר. ככלל אצבע ניתן לקחת זווית מקסימלית של 90°, שהיא קלה לזיהוי גם בשטח ללא מכשירי מדידה.

שיטות נוספות לחלוקת משקל

בשנים האחרונות (אולי בעשורים האחרונים) התפתחו מספר שיטות מעניינות לבניית תחנה עם חלוקות משקל פשוטות, מהירות ובטוחות כמו קוואד, קורדלט ועוד.

השוואת הכוחות על העיגונים

הטבלה הבאה משווה בין חלוקת משקל קלאסית ובין משולש אמריקאי, מבחינת עומסים על העיגונים:

זווית ראש עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): \alpha עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): F/W בחלוקת משקל קלאסיתעיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): F/W עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): F/W במשולש אמריקאי
0 50% 71%
30 52% 82%
60 58% 100%
90 71% 131%
120 100% 193%
140 146% 288%
150 193% 383%
160 288% 573%
170 574% 1146%
175 1146% 2292%
178 2865% 5730%

חלוקת עומס בין שלוש עגינות

חלוקה שווה

בדומה לשיטה הקלאסית של חלוקת עומס בשתי נקודות יש הצלבה בטבעת ליד עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): W כך שאין אפשרות של בריחת הרצועה מהחלוקה אם נשלף עיגון.

בחיבור כזה יש חלוקת עומס, יש גיבוי בין העיגונים, ויש אפשרות העמסה בכיוונים שונים (תנועת נקודת העומס עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): W ימינה ושמאלה).

הכוח על כאן העגינות הוא: עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): F=\frac{W}{1+2cos(\frac{\alpha}{2})}

כפי שהוזכר בחלוקת עומס בין שני עיגונים העומס עולה (תיאורטית) עד לאינסוף אם נגדיל את הזווית. זוהי אפשרות תיאורטית, כי מעשית אי אפשר להגדיל את הזווית עוד ועוד, כי הרצועה נמתחת ומתארכת עם העלייה במתיחות. ניתן לראות בנוסחה שהעומס על העיגונים עולה מאחר ובמכנה יש עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): cos(\frac{\alpha}{2}) . הביטוי הזה מתאפס בזוית של 180°. בחלוקת משקל בין שלוש עגינות העומס המכסימלי עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): F יכול להגיע עד עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): W בלבד כאשר הכוח על שתי העגינות הצדדיות מתאפס.

כלומר העומס על העיגונים יכול להיות רק בין עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): \frac{W}{3} לבין עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): W . זהו הבדל משמעותי ובחלוקת משקל כזו לשלושה עיגונים אין חשיבות רבה לזווית כמו בחלוקה לשני עיגונים.

חלוקה לא שווה

ניתן לחלק את העומס בצורה לא שווה כך שאחת העגינות תקבל חצי מהעומס, ושתי האחרות תקבלנה כל אחת רבע מהעומס.

קריאה נוספת

קישורים חיצוניים

מאמר בנושא דומה


תרמו לדף זה: מיכה יניב, דורון נצר ואחרים...