הבדלים בין גרסאות בדף "ריכוז מאמצים"

מתוך Climbing_Encyclopedia
קפיצה אל: ניווט, חיפוש
שורה 34: שורה 34:
 
בתחום הראשון, במאמצים נמוכים, העקומה היא ליניארית, על קו ישר, כלומר שמתקיים יחס קבוע בין הגידול במאמץ לבין הגידול במעוות. תחום המאמצים בהם היחס קבוע נקרא התחום האלסטי. בתחום זה החומר "זוכר" את צורתו וחוזר אליה לאחר הסרת המאמץ המופעל עליו. בתחום האלסטי נוצרים בחומר רק מעוותים אלסטיים, כלומר, כאלה הנעלמים עם הסרת הכוח הפועל.  
 
בתחום הראשון, במאמצים נמוכים, העקומה היא ליניארית, על קו ישר, כלומר שמתקיים יחס קבוע בין הגידול במאמץ לבין הגידול במעוות. תחום המאמצים בהם היחס קבוע נקרא התחום האלסטי. בתחום זה החומר "זוכר" את צורתו וחוזר אליה לאחר הסרת המאמץ המופעל עליו. בתחום האלסטי נוצרים בחומר רק מעוותים אלסטיים, כלומר, כאלה הנעלמים עם הסרת הכוח הפועל.  
  
 
+
היחס בין מאמץ למעוות בתחום האלסטי נקרא '''מודול האלסטיות''' של החומר. גודל זה ידוע גם כ'''מודול יאנג''' (Young's modulus). על שמו של תומס יאנג. מודול האלסטיות מבטא את הגמישות של החומר.  
(1): מאמץ מקסימלי.
 
 
 
(3): נקודת הכניעה - המאמץ בו עובר החומר מהתחום האלסטי לתחום הפלסטי.
 
 
 
(4): נקודת השבירה - המאמץ בו מתרחש כשל של החומר (קריעה, שבירה).
 
 
 
(5): מעוות שיורי (residual strain)
 
היא ליניארית בתחילתה, כלומר שמתקיים יחס קבוע בין הגידול במאמץ לבין הגידול במעוות. תחום המאמצים בהם היחס קבוע נקרא התחום האלסטי. בתחום זה החומר "זוכר" את צורתו וחוזר אליה לאחר הסרת המאמץ המופעל עליו. בתחום האלסטי נוצרים בחומר רק מעוותים אלסטיים, כלומר, כאלה הנעלמים עם הסרת הכוח הפועל. כלומר, עם הסרת העומס תחזור הגאומטריה של החומר לקדמותה (כמו [[חבלים|חבל]] בעומס נמוך).
 
 
 
היחס בין מאמץ למעוות בתחום האלסטי נקרא '''מודול האלסטיות''' של החומר. גודל זה ידוע גם כ'''מודול יאנג''' (Young's modulus). על שמו של תומס יאנג. במודלים פשוטים של חוזק, גודל זה קבוע, אך במודלים מורכבים יותר ובחומרים שונים הקשר בין מאמץ למעוות  חדל להיות ליניארי. מודול האלסטיות מבטא את הגמישות של החומר.
 
  
 
<math>E =\frac{\sigma}{\varepsilon}</math>
 
<math>E =\frac{\sigma}{\varepsilon}</math>
שורה 55: שורה 45:
 
<math>\varepsilon</math> - מעוות,  
 
<math>\varepsilon</math> - מעוות,  
 
<math>\sigma</math> - מאמץ.
 
<math>\sigma</math> - מאמץ.
 +
 +
במודלים פשוטים של חוזק, ובמרבית החמרים, גודל זה קבוע. אך במודלים מורכבים יותר, בעיקר במקרים בהם האלסטיות נובעת יותר מן המבנה ופחות מן החומר, הקשר בין מאמץ למעוות אינו ליניארי. [[חבלי|חבלים]] ליבה ומעטפת הם דוגמה לכך.
 +
 +
 +
 +
במאמץ מסויים, החומר מפסיק להיות אלסטי. באותה נקודה, הנקראת נקודת הכניעה (או גבול הכניעה), החומר "נכנע" למאמץ המופעל ומשנה את צורתו. העקומה משתנה ומאבדת את הליניאריות שלה. הכניעה מציינת את המאמץ בו עובר החומר מהתחום האלסטי לתחום הפלסטי.
 +
 +
הגדלת המאמץ מעבר לנקודת הכניעה מעבירה את החומר אל התחום הפלסטי. בתחום הפלסטי החומר מקבל מעוות פלסטי, כלומר, הוא משנה את צורתו ו"שוכח" את הגיאמטריה המקורית שלו.
 +
 +
(4): נקודת השבירה - המאמץ בו מתרחש כשל של החומר (קריעה, שבירה).
 +
 +
(5): מעוות שיורי (residual strain)
 +
בתחום האלסטי נוצרים בחומר רק מעוותים אלסטיים, כלומר, כאלה הנעלמים עם הסרת הכוח הפועל. כלומר, עם הסרת העומס תחזור הגאומטריה של החומר לקדמותה (כמו [[חבלים|חבל]] בעומס נמוך).
  
 
במאמץ מסויים, החומר מפסיק להיות אלסטי. באותה נקודה, הנקראת נקודת הכניעה (או גבול הכניעה), החומר "נכנע" למאמץ המופעל. העקומה משתנה ומאבדת את הלינאריות שלה.
 
במאמץ מסויים, החומר מפסיק להיות אלסטי. באותה נקודה, הנקראת נקודת הכניעה (או גבול הכניעה), החומר "נכנע" למאמץ המופעל. העקומה משתנה ומאבדת את הלינאריות שלה.

גרסה מ־05:03, 19 ביוני 2007

סוגי מאמצים

מאמץ (stress) נמדד ביחידות כוח ליחידת שטח, למשל בניוטון (או קילוניוטון או ק"ג) למילימטר מרובע (או עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): cm^2 או עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): m^2 ).

מאמץ מתיחה ודחיסה למשל הוא עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): \sigma=\frac{F}{A}

כאשר: עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): \sigma - ערך המאמץ, עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): F - ערך הכוח הפועל, עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): A - שטח חתך הגוף.

ניתן לראות שככל שהכוח הפועל על הגוף גדל, גדל גם המאמץ ואילו ככל ששטח החתך גדל, המאמץ קטן. הגדרת מאמץ היא כוח ליחידת שטח (כמו לחץ). ריכוז מאמצים נוצר כאשר כוח פועל על שטח שגודלו הולך וקטן (ומכאן שהמאמץ הולך וגדל).

Stress.jpg

כאשר המאמץ בנקודה מסוימת יעלה על יכולת החומר להתנגד לו, החומר יקרוס, ישבר או ייווצר בו חור (כך יוצר מהדק סיכות חור בנייר).

סוגי המאמצים: קיימים 3 סוגים של מאמצים בתוך חומר: מתיחה (שאיפה של חלקיקים להתרחק אחד מהשני), לחיצה (שאיפה של חלקיקים להתקרב אחד לשני) וגזירה (שאיפה של חלקיקים להיפרד זה מזה על המישור הניצב לקו המקשר ביניהם). שאר המאמצים הם מקרים פרטיים של מאמצים אלו או שילוב של מאמצים אלה.

1 - גזירה

2 - מתיחה

3 - דחיסה

4 - פיתול

(האיור מתוך עבודת סיום קורס מדריכי טיפוס של אבישי חכים).

עקומת מאמץ-מעוות

עקומת מאמץ-מעוות

בעת הפעלת כוח על גוף, מידותיו משתנות (גם אם לפעמים במידה קטנה, כזו שקשה להבחין בה). שינוי הגודל נקרא מעוות. את המעוות מחשבים באופן יחסי: אם נחלק את האורך החדש של הגוף באורך המקורי, נקבל את המעוות (strain).

עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): {\varepsilon}= \frac{\Delta L}{L}

כאשר: עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): L - האורך המקורי, עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): \Delta L - השינוי באורך, עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): \varepsilon - המעוות.

עקומת מאמץ-מעוות היא העקומה הנוצרת משרטוט המאמץ הפועל על החומר והמעוות הנוצר ממנו. ניתן לראות בעקומת מאמץ-מעוות מספר איזורים: בתחום הראשון, במאמצים נמוכים, העקומה היא ליניארית, על קו ישר, כלומר שמתקיים יחס קבוע בין הגידול במאמץ לבין הגידול במעוות. תחום המאמצים בהם היחס קבוע נקרא התחום האלסטי. בתחום זה החומר "זוכר" את צורתו וחוזר אליה לאחר הסרת המאמץ המופעל עליו. בתחום האלסטי נוצרים בחומר רק מעוותים אלסטיים, כלומר, כאלה הנעלמים עם הסרת הכוח הפועל.

היחס בין מאמץ למעוות בתחום האלסטי נקרא מודול האלסטיות של החומר. גודל זה ידוע גם כמודול יאנג (Young's modulus). על שמו של תומס יאנג. מודול האלסטיות מבטא את הגמישות של החומר.

עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): E =\frac{\sigma}{\varepsilon}

או

עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): \sigma =E\times\varepsilon

עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): E - מודול האלסטיות, עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): \varepsilon - מעוות, עיבוד הנוסחה נכשל (קובץ ההפעלה <code>texvc</code> אינו זמין. נא לעיין ב־math/README כדי להגדירו.): \sigma - מאמץ.

במודלים פשוטים של חוזק, ובמרבית החמרים, גודל זה קבוע. אך במודלים מורכבים יותר, בעיקר במקרים בהם האלסטיות נובעת יותר מן המבנה ופחות מן החומר, הקשר בין מאמץ למעוות אינו ליניארי. חבלים ליבה ומעטפת הם דוגמה לכך.


במאמץ מסויים, החומר מפסיק להיות אלסטי. באותה נקודה, הנקראת נקודת הכניעה (או גבול הכניעה), החומר "נכנע" למאמץ המופעל ומשנה את צורתו. העקומה משתנה ומאבדת את הליניאריות שלה. הכניעה מציינת את המאמץ בו עובר החומר מהתחום האלסטי לתחום הפלסטי.

הגדלת המאמץ מעבר לנקודת הכניעה מעבירה את החומר אל התחום הפלסטי. בתחום הפלסטי החומר מקבל מעוות פלסטי, כלומר, הוא משנה את צורתו ו"שוכח" את הגיאמטריה המקורית שלו.

(4): נקודת השבירה - המאמץ בו מתרחש כשל של החומר (קריעה, שבירה).

(5): מעוות שיורי (residual strain) בתחום האלסטי נוצרים בחומר רק מעוותים אלסטיים, כלומר, כאלה הנעלמים עם הסרת הכוח הפועל. כלומר, עם הסרת העומס תחזור הגאומטריה של החומר לקדמותה (כמו חבל בעומס נמוך).

במאמץ מסויים, החומר מפסיק להיות אלסטי. באותה נקודה, הנקראת נקודת הכניעה (או גבול הכניעה), החומר "נכנע" למאמץ המופעל. העקומה משתנה ומאבדת את הלינאריות שלה.

במאמץ גדול יותר ממאמץ הכניעה, החומר עובר לתחום הפלסטי. לעומת התחום האלסטי, בו כל שינוי של מידות הגוף הוא הפיך, בתחום הפלסטי, המעוות אינו הפיך. כלומר, שבעת שחרור המאמץ החומר לא חוזר למצבו ההתחלתי, נותרים בו מעוותים פלסטיים ותשמר הגיאומטריה החדשה.  

מאמצי מתיחה

בבולטים ופיתונים

בטבעות

מאמצי כפיפה

בטבעות

בפינים

מאמצי גזירה

בבולטים, פיתונים ופינים

ריכוז מאמצים

ריכוז מאמצים בקשרים

ריכוז מאמצים באבני עיגון

קריעת נייר ברצועות


תרמו לדף זה: מיכה יניב ואחרים...